Dynamic Programming Algorithm to Compute the Max Dot Product of
- Time:2020-09-08 11:08:55
- Class:Weblog
- Read:29
Given two arrays nums1 and nums2. Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000Hint:
Use dynamic programming, define DP[i][j] as the maximum dot product of two subsequences starting in the position i of nums1 and position j of nums2.
Compute the Max Dot Product of Two Subsequences
We can use DFS (Depth First Search) to enumerate the possible subsequences combination of both, but the complexity is exponetial. The key to solve this problem is to re-use the intermediate results, via Dynamic Programming algorithm.
We use a two-dimensional array dp[i][j] to represent the maxium dot product of two subsequences that end with index i and j respectively for two subsequences. Then dp[i][j] should the maximum of these values: num1[i]*num2[j], dp[i-1][j], dp[i][j-1], dp[i-1][j-1], dp[i-1][j-1]+nums1[i]*nums2[j].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | class Solution { public: int maxDotProduct(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (!m || !n) return 0; vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dp[i][j] = nums1[i] * nums2[j]; if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]); if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]); if (i-1 >= 0 && j-1>= 0) { dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]); dp[i][j] = max(dp[i][j], dp[i-1][j-1]); } } } return dp[m-1][n-1]; } }; |
class Solution { public: int maxDotProduct(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (!m || !n) return 0; vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dp[i][j] = nums1[i] * nums2[j]; if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]); if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]); if (i-1 >= 0 && j-1>= 0) { dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]); dp[i][j] = max(dp[i][j], dp[i-1][j-1]); } } } return dp[m-1][n-1]; } };
Complexity is quadric O(N^2) – and the space requirement is O(N^2) as well. The answer is dp[m-1][n-1] where m and n are the lengths of both sequences respectively.
–EOF (The Ultimate Computing & Technology Blog) —
Recommend:How to Compute the Product of Last K elements in Array using the
How to Write a High-Quality Blog Post in Just 30 Minutes
8 Things To Include In Your Blog Privacy Policy
Customer Success Strategy: 7 Reasons Why You Need One for Your B
Tips On Creating Content For Marketing For 2020
Best Image Optimizer Plugins for WordPress in 2019
A Blogger’s Guide to Successful Content Marketing in a Saturated
6 Remote Jobs For Supplemental Income
5 Tips When Preparing for a Business Conference
Customizing WordPress with Branda by WPMU DEV
- Comment list
-
- Comment add