Algorithm to Check if All Points are On the Same Line

  • Time:2020-09-09 13:16:32
  • Class:Weblog
  • Read:37

You are given an array coordinates, coordinates[i] = [x, y], where [x, y] represents the coordinate of a point. Check if these points make a straight line in the XY plane.

Input: coordinates = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,7]]
Output: true
points-on-a-line-1 Algorithm to Check if All Points are On the Same Line algorithms c / c++ geometry

Input: coordinates = [[1,1],[2,2],[3,4],[4,5],[5,6],[7,7]]
Output: false
points-on-a-line-2 Algorithm to Check if All Points are On the Same Line algorithms c / c++ geometry

Constraints:
2 <= coordinates.length <= 1000
coordinates[i].length == 2
-10^4 <= coordinates[i][0], coordinates[i][1] <= 10^4
coordinates contains no duplicate point.

Hints:
If there’re only 2 points, return true.
Check if all other points lie on the line defined by the first 2 points.
Use cross product to check collinearity.

Cross Product to Check If Points are On a Line

If there are less than or equal to two points, we return true – as 1 or 2 points must be on the line. Then we use the first two points to compute the delta x and y offsets. Then checking from the third point, we can use the cross product to see if it is the same.

The following C++ implementation has O(N) linear runtime complexity.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public:
    bool checkStraightLine(vector<vector<int>>& coordinates) {
        if (coordinates.size() <= 2) return true;
        int dx = coordinates[0][0] - coordinates[1][0];
        int dy = coordinates[0][1] - coordinates[1][1];
        for (int i = 2; i < coordinates.size(); ++ i) {
            int dx1 = coordinates[0][0] - coordinates[i][0];
            int dy1 = coordinates[0][1] - coordinates[i][1];            
            if (dx1 * dy != dy1 * dx) return false;
        }
        return true;
    }
};
class Solution {
public:
    bool checkStraightLine(vector<vector<int>>& coordinates) {
        if (coordinates.size() <= 2) return true;
        int dx = coordinates[0][0] - coordinates[1][0];
        int dy = coordinates[0][1] - coordinates[1][1];
        for (int i = 2; i < coordinates.size(); ++ i) {
            int dx1 = coordinates[0][0] - coordinates[i][0];
            int dy1 = coordinates[0][1] - coordinates[i][1];            
            if (dx1 * dy != dy1 * dx) return false;
        }
        return true;
    }
};

The cross product (one of the most classic geometrygeometry algorithms) returns the perpendicular vector/line to the original line. If the cross product is the same, then the point must be on the same line.

–EOF (The Ultimate Computing & Technology Blog) —

Recommend:
How to Vlog: A Guide to Start Vlogging in 2020
5 Healthy Lifestyle Blogs to Know This 2020
Young People Changing the World One Idea at a Time
Remember Your Blog Is A Reflection Of You
Learn About Blog Content Planning
Adding PHPUnit Tests for Discord Cryptocurrency Bot Regarding th
Algorithm to Multiply Two Big Integers (String)
Use jQuery Migrate Helper Plugin to Fix the Classic Editor Error
How to Fix CloudFlare Error 1101 (Worker threw exception)?
Python Function to Convert Excel Sheet Column Titles to Numbers
Share:Facebook Twitter
Comment list
Comment add