Finding the Closest Divisors
- Time:2020-09-10 13:27:27
- Class:Weblog
- Read:26
Given an integer num, find the closest two integers in absolute difference whose product equals num + 1 or num + 2. Return the two integers in any order.
Example 1:
Input: num = 8
Output: [3,3]
Explanation: For num + 1 = 9, the closest divisors are 3 & 3, for num + 2 = 10, the closest divisors are 2 & 5, hence 3 & 3 is chosen.Example 2:
Input: num = 123
Output: [5,25]Example 3:
Input: num = 999
Output: [40,25]Constraints:
1 <= num <= 10^9Hints:
Find the divisors of n+1 and n+2.
To find the divisors of a number, you only need to iterate to the square root of that number.
Find the divisors of n+1 and n+2
We can find the closet divisors for n+1 and n+2 respectively. Then, we can compare the absolute difference of both divisors and pick the smaller one.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class Solution { public: vector<int> closestDivisors(int num) { vector<int> r1 = findDivisor(num + 1); vector<int> r2 = findDivisor(num + 2); if (abs(r1[0] - r1[1]) < abs(r2[0] - r2[1])) { return r1; } return r2; } private: vector<int> findDivisor(int num) { vector<int> r = {1, num}; for (int i = 2; i * i <= num; ++ i) { if (num % i == 0) { r = {i, num / i}; } } return r; } }; |
class Solution { public: vector<int> closestDivisors(int num) { vector<int> r1 = findDivisor(num + 1); vector<int> r2 = findDivisor(num + 2); if (abs(r1[0] - r1[1]) < abs(r2[0] - r2[1])) { return r1; } return r2; } private: vector<int> findDivisor(int num) { vector<int> r = {1, num}; for (int i = 2; i * i <= num; ++ i) { if (num % i == 0) { r = {i, num / i}; } } return r; } };
We can start from the square root in the non-ascending order, thus enabling us early exit if we find a divisor. An improvement is to check (x+1) first then (x+2) since the first found divisor is the answer, we can safely exit the loop.
1 2 3 4 5 6 7 8 9 10 11 12 | class Solution { public: vector<int> closestDivisors(int x) { for (int a = sqrt(x + 2); a > 0; --a) { if ((x + 1) % a == 0) return {a, (x + 1) / a}; if ((x + 2) % a == 0) return {a, (x + 2) / a}; } return {}; } }; |
class Solution { public: vector<int> closestDivisors(int x) { for (int a = sqrt(x + 2); a > 0; --a) { if ((x + 1) % a == 0) return {a, (x + 1) / a}; if ((x + 2) % a == 0) return {a, (x + 2) / a}; } return {}; } };
Only the divisors up to Square Root of N are checked thus the runtime complexity of above solutions are O(Sqrt(N)).
–EOF (The Ultimate Computing & Technology Blog) —
Recommend:The Reduce Function in Python
The Combination Function and Iterator using Depth First Search A
Compute the Sequential Digits within a Range using DFS, BFS, or
Bruteforce or Line Sweep Algorithms to Remove Covered Intervals
Microbit Programming: The Development of a Snake Eating Apple Ga
Compute the Angle of the Hour and Minute Hand on a Clock
How to Convert Binary Number in a Linked List to Integer?
The Permutation Iterator in Python
Compute the Indices of the Target Element in Array/List using Py
5 Cognitive Biases You Can Use to Boost E-Commerce Conversions
- Comment list
-
- Comment add