The Unique Permutations Algorithm with Duplicate Elements
- Time:2020-09-17 14:26:24
- Class:Weblog
- Read:31
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
Example:
Input: [1,1,2]
Output:
1 2 3 4 5 [ [1,1,2], [1,2,1], [2,1,1] ][ [1,1,2], [1,2,1], [2,1,1] ]
How to Get Unique Permuations in C++?
In fact, the C++ STL algorithm header provides the std::next_permutation() which deals with the duplicate elements in the candidate array. We just need to sort the array, then start permutating until the next_permutation() returns false.
1 2 3 4 5 6 7 8 9 10 11 12 | class Solution { public: vector<vector<int>> permuteUnique(vector<int>& nums) { vector<vector<int>> r; sort(begin(nums), end(nums)); r.push_back(nums); while (next_permutation(begin(nums), end(nums))) { r.push_back(nums); } return r; } }; |
class Solution { public: vector<vector<int>> permuteUnique(vector<int>& nums) { vector<vector<int>> r; sort(begin(nums), end(nums)); r.push_back(nums); while (next_permutation(begin(nums), end(nums))) { r.push_back(nums); } return r; } };
Recursive Permutation Algorithm without Duplicate Result
Similar to The Permutation Algorithm for Arrays using Recursion, we can do this recursively by swapping two elements at each position. However, we need to keep tracking of the solution that has also been in the permutation result using a hash set.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | class Solution { public: vector<vector<int>> permuteUnique(vector<int>& nums) { vector<vector<int>> r; dfs(nums, 0, r, ""); return r; } private: unordered_set<string> used; void dfs(vector<int>& nums, int index, vector<vector<int>> &r, string key) { if (index == nums.size()) { if (!used.count(key)) { r.push_back(nums); used.insert(key); } } else { for (int i = index; i < nums.size(); ++ i) { swap(nums[i], nums[index]); dfs(nums, index + 1, r, key + std::to_string(nums[index])); swap(nums[i], nums[index]); } } } }; |
class Solution { public: vector<vector<int>> permuteUnique(vector<int>& nums) { vector<vector<int>> r; dfs(nums, 0, r, ""); return r; } private: unordered_set<string> used; void dfs(vector<int>& nums, int index, vector<vector<int>> &r, string key) { if (index == nums.size()) { if (!used.count(key)) { r.push_back(nums); used.insert(key); } } else { for (int i = index; i < nums.size(); ++ i) { swap(nums[i], nums[index]); dfs(nums, index + 1, r, key + std::to_string(nums[index])); swap(nums[i], nums[index]); } } } };
In the worst cases, both implementations are O(N!) as N! is the total number of permutation results for N-size elements.
–EOF (The Ultimate Computing & Technology Blog) —
Recommend:Can we Construct K Palindrome Strings?
Sum of Even Fibonacci Numbers
Sum of Multiples of 3 and 5
How to Design Underground System using Several Hash Maps?
How to Remove Zero Sum Consecutive Nodes from Linked List using
Depth First Search and Breadth First Search Algorithm to Open th
Dynamic Programming (Memoization) to Sort Integers by The Power
Applicable Accounting Software For Churches
How to Balance a Binary Search Tree using Recursive Inorder Trav
Finding the Lucky Numbers in a Matrix
- Comment list
-
- Comment add