Find the Queens That Can Attack the King

  • Time:2020-09-17 14:26:24
  • Class:Weblog
  • Read:20

On an 8×8 chessboard, there can be multiple Black Queens and one White King.

Given an array of integer coordinates queens that represents the positions of the Black Queens, and a pair of coordinates king that represent the position of the White King, return the coordinates of all the queens (in any order) that can attack the King.

queens-attack-king-on-chess-board1 Find the Queens That Can Attack the King algorithms c / c++
Input: queens = [[0,1],[1,0],[4,0],[0,4],[3,3],[2,4]], king = [0,0]
Output: [[0,1],[1,0],[3,3]]
Explanation:
The queen at [0,1] can attack the king cause they’re in the same row.
The queen at [1,0] can attack the king cause they’re in the same column.
The queen at [3,3] can attack the king cause they’re in the same diagnal.
The queen at [0,4] can’t attack the king cause it’s blocked by the queen at [0,1].
The queen at [4,0] can’t attack the king cause it’s blocked by the queen at [1,0].
The queen at [2,4] can’t attack the king cause it’s not in the same row/column/diagnal as the king.

queens-attack-king-on-chess-board2 Find the Queens That Can Attack the King algorithms c / c++
Input: queens = [[0,0],[1,1],[2,2],[3,4],[3,5],[4,4],[4,5]], king = [3,3]
Output: [[2,2],[3,4],[4,4]]

queens-attack-king-on-chess-board3 Find the Queens That Can Attack the King algorithms c / c++
Input: queens = [[5,6],[7,7],[2,1],[0,7],[1,6],[5,1],[3,7],[0,3],[4,0],[1,2],[6,3],[5,0],[0,4],[2,2],[1,1],[6,4],[5,4],[0,0],[2,6],[4,5],[5,2],[1,4],[7,5],[2,3],[0,5],[4,2],[1,0],[2,7],[0,1],[4,6],[6,1],[0,6],[4,3],[1,7]], king = [3,4]
Output: [[2,3],[1,4],[1,6],[3,7],[4,3],[5,4],[4,5]]

Hints:
Check 8 directions around the King.
Find the nearest queen in each direction.

Find the Nearest Queen in Each Direction by Bruteforce Algorithm

We can start search in 8 directions from the position of the king, until we meet the nearest the Queen or the position has fall outside of the chess board.

In order to find if there is a queen in the current position, we can preprocess the list of given queens into a hash set.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        unordered_set<string> qs;
        for (const auto &q: queens) {
            qs.insert(std::to_string(q[0]) + "," + std::to_string(q[1]));
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if (qs.count(
                          std::to_string(pos[0]) + "," +
                          std::to_string(pos[1]))) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        unordered_set<string> qs;
        for (const auto &q: queens) {
            qs.insert(std::to_string(q[0]) + "," + std::to_string(q[1]));
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if (qs.count(
                          std::to_string(pos[0]) + "," +
                          std::to_string(pos[1]))) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};

Alternatively, we can use O(1) memory e.g. static board boolean flags.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        bool board[64];
        std::fill(begin(board), end(board), false);
        for (const auto &q: queens) {
            board[q[0] * 8 + q[1]] = true;
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if ((pos[0] >= 0) && (pos[0] < 8) && 
                    (pos[1] >= 0) && (pos[1] < 8) && 
                    board[pos[0] * 8 + pos[1]]) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};
class Solution {
public:
    vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
        vector<vector<int>> r;
        int dir[][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {-1, 1}, {1, -1}};
        bool board[64];
        std::fill(begin(board), end(board), false);
        for (const auto &q: queens) {
            board[q[0] * 8 + q[1]] = true;
        }
        for (int i = 0; i < 8; ++ i) {
            int dx = dir[i][0];
            int dy = dir[i][1];
            vector<int> pos(king);
            while ((pos[0] >= 0) && (pos[0] < 8) &&
                (pos[1] >= 0) && (pos[1] < 8)) {
                pos[0] += dx;
                pos[1] += dy;
                if ((pos[0] >= 0) && (pos[0] < 8) && 
                    (pos[1] >= 0) && (pos[1] < 8) && 
                    board[pos[0] * 8 + pos[1]]) {
                    r.push_back(pos);
                    break;
                }
            }
        }
        return r;
    }
};

As the board size is fixed 8×8, both the time and space complexity is O(1) constant.

–EOF (The Ultimate Computing & Technology Blog) —

Recommend:
Instagram Influencer Marketing Is A Billion Dollar Industry [Inf
5 Social Adverts for Driving Stellar Webinar Attendance (Infogra
5 Ways to Serve Up a Tastier Food Blog to Your Audience
Meet These Single Moms That Created Successful Blogs
Boost Your SERP Rankings with Better Marketing Automation
How to Turn Your Withering Blog Posts into Fully-Fledged Plants
The Emoji Evolution: How Your Brand Can Use Emojis
6 Tips to Get Started With Selling on Your Blog
Introduction to Microbit and Javascript/Typescript Programming
Return the Path that Sum up to Target using DFS or BFS Algorithm
Share:Facebook Twitter
Comment list
Comment add